
Journal of Sound and Vibration (1997) 207(1), 1–13

QUINTIC SPLINES IN THE STUDY OF TRANSVERSE
VIBRATIONS OF NON-UNIFORM ORTHOTROPIC

RECTANGULAR PLATES

R. L, U. S. G  R

Department of Mathematics, University of Roorkee, Roorkee-247 667, India

(Received 12 April 1995, and in final form 13 November 1996)

An analysis and numerical results are presented for free transverse vibrations of
orthotropic rectangular plates of linearly varying thickness along one direction and resting
on an elastic foundation of the Winkler type on the basis of classical plate theory. Following
the Lévy approach i.e., two parallel edges being simply supported, the fourth order
differential equation governing the motion of such plates has been solved by using the
quintic splines interpolation technique for three different combinations of clamped, simply
supported and free boundary conditions at the other two edges. The effect of the elastic
foundation together with the orthotropy, aspect ratio and thickness variation on the natural
frequencies of vibration is illustrated for the first three modes of vibration. Normalized
displacements are presented for two different values of the taper constant keeping other
plate parameters fixed for all the three boundary conditions. A comparison of the results
with those available in literature is presented.

7 1997 Academic Press Limited

INTRODUCTION

A considerable amount of work dealing with natural frequencies of isotropic rectangular
plates of variable thickness has appeared in the literature [1–4] to mention a few, of which
[3, 4] are comprehensive survey papers. Recently there has been increasingly great interest
in high strength materials for structural components used in mechanical, aerospace, ocean
engineering, electronic and optical equipments. Composite materials such as glass-epoxy,
boron-epoxy, Kevalar and graphites etc., are lighter, stiffer and stronger than any other
material used earlier. These materials have a wide range of operating temperatures besides
high damping and resistance to corrosion. Plates fabricated out of modern composites
together with thickness variation are not only reduced in size and weight but also meet
the desirability of high strength. This has necessitated the study of vibrational
characteristics of orthotropic plates [5–16]. Further the problem of plates resting on an
elastic foundation has achieved importance in modern technological and foundation
engineering [17–20].

The present paper deals with the effect of Winkler type foundation on the natural
frequencies of orthotropic rectangular plates with thickness varying linearly in one
direction only. The two parallel edges (y=0, y=b) are assumed to be simply supported
while the other two edges are differently restrained (clamped, simply supported or free).
The fourth order linear differential equation with variable coefficients which governs the
motion has been solved by the method of quintic splines. This method of solution is
preferred over other methods for the reasons (a) a chain of lower order approximations
may yield a better accuracy than a global higher order approximation [21, 22] and
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Figure 1. Boundary conditions and vertical cross-section of the plate.

(b) natural boundary conditions can be considered easily. Frequencies for the first three
modes of vibration have been computed for various plate parameters. A five ply maple
plywood has been taken as an example of a rectangular orthotropic material.

2. MATHEMATICAL FORMULATION

Consider a rectangular plate of length a, breadth b, thickness h= h(x, y), density r and
resting on a Winkler type foundation of foundation modulus kf . The plate is referred to
a system of rectangular Cartesian co-ordinates (x, y, z), the middle surface being z=0,
and the origin at one of the corners of the plate. The x- and y-axes are taken along the
principal directions of orthotropy and the axis of z is perpendicular to the xy-plane
(Figure 1). The differential equation which governs the transverse free vibrations of such
plates is given by
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Figure 2. Percentage error in V for C–C plate for a/b=1·0, K=0·02 and a=−0·5. Percentage
error= [(Vn −V40)/V40]×100; n=15(5)50.
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T 1

Values of frequency parameter V, for C–C plate

a
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

Mode K −0·5 −0·3 −0·1 0·0 0·1 0·3 0·5

a/b=0·5
I 0·00 28·1105 26·0053 23·8272 22·7046 21·5545 19·1562 16·5686

0·01 29·7901 27·9497 26·1171 25·2092 24·3117 22·5730 20·9859
0·02 31·3796 29·7673 28·2218 27·4864 26·7859 25·5356 24·6166

II 0·00 76·9075 71·1660 65·2160 62·1452 58·9976 52·4147 45·2923
0·01 77·5359 71·9004 66·0871 63·1033 60·0598 53·7617 47·1101
0·02 78·1665 72·6277 66·9470 64·0470 61·1035 55·0761 48·8619

III 0·00 150·5127 139·2896 127·6517 121·6422 115·4798 102·5826 88·6122
0·01 150·8371 139·6666 128·0989 122·1344 116·0260 103·2781 89·5592
0·02 151·1609 140·0426 128·5448 122·6247 116·5699 103·9691 90·4965

a/b=1·0
I 0·00 29·8960 27·6522 25·3333 24·1394 22·9180 20·3716 17·6311

0·01 31·4809 29·4884 27·4980 26·5087 25·5277 23·6138 21·8378
0·02 32·9894 31·2168 29·5044 28·6829 27·8942 26·4608 25·3496

II 0·00 78·6036 72·7311 66·6479 63·5093 60·2931 53·5693 46·3002
0·01 79·2221 73·4501 67·5006 64·4471 61·3328 54·8881 48·0796
0·02 79·8359 74·1619 68·3427 65·3715 62·3551 56·1761 49·7972

III 0·00 152·2119 140·8583 129·0871 123·0097 116·7784 103·7395 89·6205
0·01 152·5328 141·2311 129·5294 123·4966 117·3188 104·4275 90·5567
0·02 152·8530 141·6030 129·9704 123·9815 117·8565 105·1110 91·4838

T 2

Values of frequency parameter V, for C–S plate

a
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

Mode K −0·5 −0·3 −0·1 0·0 0·1 0·3 0·5

a/b=0·5
I 0·00 18·6482 17·5741 16·4497 15·8644 15·2604 13·9827 12·5734

0·01 21·0281 20·2936 19·6012 19·2789 18·9788 18·4754 18·1869
0·02 23·1643 22·6891 22·3120 22·1738 22·0796 22·0698 22·4244

II 0·00 61·5457 57·2418 52·7817 50·4801 48·1213 43·1895 37·8590
0·01 62·3284 58·1483 53·8525 51·6550 49·4206 44·8282 40·0546
0·02 63·1015 59·0408 54·9024 52·8038 50·6867 46·4095 42·1405

III 0·00 128·9620 119·6347 109·9660 104·9752 99·8595 89·1609 77·5925
0·01 129·3395 120·0724 110·4845 105·5453 100·4915 89·9639 78·6830
0·02 129·7158 120·5987 111·0005 106·1123 101·1194 90·7597 79·7593

a/b=1·0
I 0·00 21·3082 19·9359 18·5186 17·7888 17·0422 15·4846 13·8038

0·01 23·4223 22·3718 21·3677 20·8912 20·4386 19·6360 19·0606
0·02 25·3601 24·5670 23·8792 23·5891 23·3458 23·0498 23·1410

II 0·00 63·5939 59·1037 54·4556 52·0594 49·6052 44·4808 38·9533
0·01 64·3513 59·9816 55·4941 53·1994 50·8668 46·0737 41·0903
0·02 65·0999 60·8471 56·5134 54·3155 52·0977 47·6138 43·1257

III 0·00 130·8933 121·4008 111·5643 106·4887 101·2870 90·4132 78·6630
0·01 131·2651 121·8322 112·0755 107·0507 101·9102 91·2051 79·7388
0·02 131·6359 122·2620 112·5842 107·6096 102·5294 91·9902 80·8009
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where

Dx =E*x h3/12, Dy =E*y h3/12, Dxy =Gxyh3/12, D1 =E*h3/12,

H=D1 +2Dxy, (E*x , E*y )= (Ex , Ey )/(1− nxny ), E*= nyE*x = nxE*y ,

w(x, y, t) is the transverse deflection, t is the time, r is the mass density and Ex , Ey , ny ,
nx and Gxy are material constants in proper directions.

Further, it is assumed that the two opposite edges of the plate y=0 and y= b are simply
supported and that the thickness varies in the x-direction only i.e., h= h(x). For a
harmonic solution, the deflection w (Lévy approach) is assumed to be

w(x, y, t)= w̄(x) sin (ppy/b) eivt (2)

where p is a positive integer and v is the radian frequency.
Introducing the non-dimensional variables

X= x/a, Y= y/b, h�= h/a, W= w̄/a (3)

equation (1) reduces to

h�3Wiv + 6h�2h�'W1+[3{h�2h�0+2h�h�'2}−2(h*/E*x )h�3l2]W0

−6(h*/E*x )h�2h�'l2W'+ [(E*y /E*x )h�3l4 −3(E*/E*x )

{h�2h�0+2h�h�'2}l2 −12(ra2v2/E*x )h�+12K]W=0, (4)

T 3

Values of frequency parameter V, for C–F plate

a
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

Mode K −0·5 −0·3 −0·1 0·0 0·1 0·3 0·5

a/b=0·5
I 0·00 6·2732 5·8362 5·4196 5·2229 5·0369 4·7106 4·4804

0·01 11·2235 11·4608 11·8588 12·1359 12·4784 13·4208 14·8639
0·02 14·5774 15·1193 15·8708 16·3486 16·9124 18·3737 20·4418

II 0·00 27·7286 26·0856 24·4016 23·5411 22·6663 20·8658 18·9790
0·01 29·3671 27·9771 26·6215 25·9650 25·3302 24·1663 23·2969
0·02 30·9199 29·7492 28·6702 28·1812 27·7396 27·0740 26·9915

III 0·00 76·2075 71·0087 65·6350 62·8689 60·0402 54·1519 47·8453
0·01 76·8383 71·7389 66·4979 63·8162 61·0885 55·4783 49·6388
0·02 77·4639 72·4618 67·3497 64·7495 62·1192 56·7743 51·3742

a/b=1·0
I 0·00 11·7439 10·7327 9·7046 9·1852 8·6637 7·6234 6·6221

0·01 15·0359 14·6119 14·3464 14·2958 14·3171 14·6532 15·5800
0·02 17·7246 17·6575 17·8171 18·0103 18·2998 19·2595 20·9359

II 0·00 34·1337 31·6098 29·0511 27·7572 26·4525 23·8073 21·1071
0·01 35·4714 33·1832 30·9672 29·8405 28·7703 26·7557 25·0710
0·02 36·7609 34·6856 32·7149 31·7877 30·9150 29·4151 28·5351

III 0·00 81·0645 75·2520 69·2680 66·1985 63·0674 56·5796 49·6823
0·01 81·6546 75·9392 70·0853 67·0986 64·0673 57·8536 51·4177
0·02 82·2406 76·6205 70·8933 67·9869 65·0516 59·1008 53·1008
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Figure 3. Natural frequencies of C–C, C–S and C–F plates for the first mode of vibration. a/b=0·5: –x–x–,
K=0·0; –r–r–, K=0·02. a/b=1·0: –w–w–, K=0·0; –W–W–, K=0·02.

Figure 4. Natural frequencies of C–C, C–S and C–F plates for the second mode of vibration. Key as
Figure 3.

where

l2 = p2p2a2/b2, K= akf /E*x , h*=E*+2Gxy.

For a linear thickness variation in the x direction given by



0.5

149.0

49.0
–0.5

α

Ω

–0.3 –0.1 0.30.1

129.0

109.0

89.0

69.0

C–C plate

C–S plate

C–F plate

.   .6

h�= h0(1− aX), (5)

where h0 is the thickness of the plate at X=0 and a is the taper parameter. Equation (4)
now reduces to

A0Wiv +A1W1+A2W0+A3W'+A4W=0, (6)

where

A0 = (1− aX)3, A1 =−6a(1− aX)2, A2 =6a2(1− aX)−2l2(h*/E*x )(1− aX)3,

A3 =6al2(h*/E*x )(1− aX)2, V2 =12ra2v2/E*x h2
0

A4 = l4(E*y /E*x )(1− aX)3 −6a2l2(E*/E*x )(1− aX)−V2(1− aX)+12(K/h3
0 ),

and primes denote differentiation with respect to X.
The solution of equation (6) together with the boundary conditions at the edges X=0

and X=1 constitutes a well defined boundary value problem which has been solved by
a quintic splines interpolation technique.

3. SOLUTION BY QUINTIC SPLINES

According to the spline technique [20], one divides the interval [0, 1] into n equal
subintervals DX by means of points Xi , i=0, 1, 2, . . . , n. The quintic spline takes the form

W(X)= a0 + s
4

j=1

aj (X−X0)j + s
n−1

i=0

bi (X−Xi )5

*
, (7)

Figure 5. Natural frequencies of C–C, C–S and C–F plates for the third mode of vibration. Key as
Figure 3.
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Figure 6. Normalized displacements of C–C plate for the first three modes of vibration. ----, a=0·5; ——,
a=−0·5; a/b=1·0; K=0·01.

where

(X−Xi )*
=60X−Xi

if XEXi

if XqXi
,

DX=1/n and a0, . . . , a4, b0, . . . , bn−1 are (n+5) unknown constants.
Substitution for W(X) and its derivatives into equation (6) gives, for satisfaction at the

mth knot,

A4a0 + [A4(Xm −X0)+A3]a1 + [A4(Xm −X0)2 +2A3(Xm −X0)+2A2]a2

+ [A4(Xm −X0)3 +3A3(Xm −X0)2 +6A2(Xm −X0)+6A1]a3

+ [A4(Xm −X0)4 +4A3(Xm −X0)3 +12A2(Xm −X0)2 +24A1(Xm −X0)+24A0]a4

+ s
n−1

i=0

[A4(Xm −Xi )5 +5A3(Xm −Xi )4 +20A2(Xm −Xi )3

+60A1(Xm −Xi )2 +120A0(Xm −Xi )]bi =0. (8)

For m=0(1)n, one obtains a set of (n+1) homogeneous equations having (n+5)
unknowns ai , i=0(1)4, bj , j=0, 1, . . . , (n−1), which can be represented by the matrix
equation

[A]{B}= {0}, (9)

where A is a matrix of order (n+1)× (n+5) and, {B} and {0} are column vectors.
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4. BOUNDARY CONDITIONS AND FREQUENCY EQUATIONS

The three sets of boundary conditions namely C–C, C–S, C–F have been considered
in which the first symbol represents the condition at the edge X=0 and second symbol
at the edge X=1 and C, S, F stand for clamped, simply supported and free edge,
respectively. The relations which should be satisfied at clamped, simply supported and
free edge are W=dW/ dX=0; W=(d2W/ dX2)− (E*/E*x )l2W=0 and (d2W/ dX2)−
(E*/E*x )l2W=(d3W/ dX3)− {(E*+4Gxy )/E*x }l2(dw/ dX)=0, respectively.

Applying the boundary condition C–C to the displacement function (7), one obtains a
set of four homogeneous equations in terms of unknown constants ai , i=0(1)4, bj ,
j=0(1)(n−1) which can be written as

[BCC]{B}= {0}, (10)

where [BCC] is a 4× (n+5) matrix.
The equations (10) together with the field equations (9) give a complete set of (n+5)

equations in (n+5) unknowns which can be denoted by

[A/BCC]{B}= {0}. (11)

For a non-trivial solution of equation (11), the frequency determinant must vanish and
hence,

=A/BCC==0. (12)

Similarly for C–S and C–F plates, the frequency determinants can be written as

=A/BCS==0, =A/BCF==0, (13, 14)

respectively.

Figure 7. Normalized displacements of C–S plate for the first three modes of vibration. Key as Figure 6.
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Figure 8. Normalized displacements of C–F plate for the first three modes of vibration. Key as Figure 6.

5. NUMERICAL RESULTS AND DISCUSSION

The frequency equations (12), (13) and (14) provide the values of the frequency
parameter V for various values of plate parameters. In the work reported here, numerical
results have been computed for the first three modes of vibration, for various values of
foundation parameter K(=akf /E*x )=0·00, 0·01, 0·02 and taper constant a=0·0, −0·5
(0·2) 0·5 on the natural frequencies for two values of aspect ratio a/b=0·5, 1·0 for three
boundary conditions C–C, C–S and C–F. This is achieved by writing p=1 in the frequency
equations and determining the first three values of V. The values of elastic constants used
for the plate material are Ex =1·87×106 p.s.i. (=1·3147×105 kg/cm2), Ey =0·60
×106 p.s.i. (=0·4218×105 kg/cm2), Gxy =0·159×106 p.s.i. (=0·1118×105 kg/cm2) and
nx =0·12 (5-ply maple plywood [25]). The thickness h0 at the origin has been taken as 0·1.

To choose the appropriate interval DX, the computer program developed for the
evaluation of frequency parameter V was run for 15(5)50. The numerical values showed
a consistent improvement with the increase in number of knots. In all the above
computations, n=40 has been fixed, since further increase in n does not improve the
results except in fourth (aQ−0·3) or fifth (ae−0·3) decimal place (Figure 2). Double
precision arithmetic has been used for the computation of results.

The results are presented in Tables 1–3 and Figures 3–8. It is found that the frequency
parameter V for a C–S plate is greater than that for a C–F plate but less than that for
a C–C plate for the same set of values of plate parameters a/b, a and K.

Figure 3 shows the behaviour of the frequency parameter V for varying values of taper
constant a, foundation parameter K and the aspect ratio a/b for a plate vibrating in
fundamental mode. The frequency parameter is found to decrease with the increase in a

for all the boundary conditions i.e., C–C, C–S and C–F when K=0·0. However, in the
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presence of an elastic foundation i.e., Kq 0, the frequency parameter V is found to
decrease with the increasing values of a for C–C and C–S plates but in the case of C–F
boundary the behaviour is different. In this case for a/b=0·5 the frequency parameter is
found to increase with increasing value of a while for a/b=1·0 it first decreases and then
increases. The frequency parameter V is found to increase with the increasing values of
the foundation parameter K, all other parameters being fixed.

When the plate is vibrating in the second mode (Figure 4), the frequency parameter V

is found to decrease with increasing values of a for all the three boundary conditions. The
frequency parameter V is found to increase with the increasing value of K (other

T 4

Comparison of frequency parameter V for isotropic plates of uniform thickness: K=0·0,
n=0·3

Boundary conditions
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

C–C C–S C–F C–F
ZXXXXXXXXXXXCXXXXXXXXXXV

Mode a/b=0·5 a/b=1·0

I 23·830 17·339 5·702 12·678
23·816* 17·332* 5·704* 12·687*

12·68**
12·83†

II 63·709 52·231 24·953 33·060
63·535* 52·098* 24·944* 33·065*

III 123·766 106·857 64·578 72·541
122·929* 106·479* 64·402* 72·398*

* Values taken from [23].
** Values calculated by finite element method [24].
† Values calculated by optimized Kantorovich method[24].

T 5

Values of fundamental frequencies V(=12ra2v2/E*y h2
0 ) for orthotropic plates of uniform

thickness: K=0·0, a/b=2·0 (Dx /Dy =3·117, D1/Dy = nx =0·120, H/Dy =0·648)

Reference [25]
Boundary Present ZXXXXXXXXCXXXXXXXXV
conditions study Exact Rayleigh method

SFSF:S=11
F

F
=S 17·391 17·39 17·42

SFSS:S=11
S

F
=S 20·652 20·65 20·70

SFSC:S=11
C

F
=S 26·057 26·06 26·22

SSSS:S=11
S

S
=S 48·653 48·65 48·65

SCSS:S=11
S

C
=S 68·517 68·52 68·53

SCSC:S=11
C

C
=S 94·556 94·56 94·57

Symbols: C, clamped; S, simply supported; F, free.
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T 6

Values of frequency parameter V(=12ra2v2/E*y h2
0 ) for a uniform orthotropic SFSC plate

(5-ply maple plywood): K=0·0, a/b=2·0

Reference [25]
Present ZXXXXXXXXCXXXXXXXXV

p Mode study Exact Rayleigh method

1 1 26·057 26·06 26·22
2 97·671 97·68 97·70
3 254·675 254·68 254·65
4 490·986 490·98 491·00

3 1 161·722 161·72 162·67
2 212·016 212·04 213·67

5 1 439·736 439·74 441·14

parameters being fixed). However, the rate of increase of V is less when compared to that
for the fundamental mode.

As far as the behaviour of the plate vibrating in the third mode (Figure 5) is concerned,
it is the same as for the second mode with the difference that the rate of decrease of
frequency parameter V with taper constant a is much higher when compared to that for
the first two modes.

For a square plate (a/b=1·0), the frequency parameter V for Ke 0 is found to decrease
with the increase in a for all the three plates in all the modes considered here, except for
C–F plate, vibrating in its fundamental mode and Kq 0. In this case the frequencies first
decrease and then increase with increasing values of a.

The results (Tables 1–3, Figures 3–5) show that presence of an elastic foundation
increases the frequency parameter in all the cases. The increase becomes more and more
pronounced as a increases i.e., as the plate gets thinner and thinner towards the edge X=1,
for all the boundary conditions considered here. Further, this increase becomes less and
less as the aspect ratio a/b increases. The same is true with increasing number of modes.
This can be attributed to the fact that an increase in a/b and a amounts to an increase
in the stiffness of the plate.

Mode shapes have been computed for a=20·5, K=0·01 and a/b=1·0 for all the
boundary conditions. Normalized displacements Wnorm (=W/Wmax ) are shown in Figures
6–8, for the first three modes of vibration. From Figures 6 and 7, it is evident that the
transverse deflection for a=0·5 is less towards the edge X=0 and greater towards the
edge X=1 than the corresponding deflection for a=−0·5 for C–C and C–S plates.
However, in the case of a C–F plate (Figure 8), the behaviour is not of this kind. In this
case the transverse deflection for a=−0·5 is greater than the corresponding deflection for
a=0·5 towards both the edges. The nodal lines are seen to shift towards the edge X=0
as the edge X=1 increases in thickness.

Table 4 shows a comparison of the present results for isotropic plates (obtained by
taking h*/E*x =1, E*/E*x = n, E*y /E*x =1 and Ey =Ex =E in equation (4)) of uniform
thickness (a=0) with those of [23] obtained by using Chebyshev polynomials for K=0·0,
a/b=0·5 and n=0·3. The only available fundamental frequency for a square plate
(a/b=1·0) and C–F boundary obtained by two methods i.e., by the finite element method
and by optimized Kantorovich method [24] has been reported. The results show a very
good agreement.

To compare the frequencies for orthotropic plates with those of Hearmon [25], as also
given by Leissa [1] in Tables 9.8 and 9.10, p.257–258 for uniform thickness, results have
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been computed for all the six similar combinations of boundary conditions with aspect
ratio a/b=2·0 and K=0·0 for the same orthotropic material (5-ply maple plywood) and
are given in Table 5 for the fundamental mode. For higher modes and different values of
p=1, 3, 5 for a uniform orthotropic plate of the same material with a/b=2·0, K=0·0
with a SFSC boundary condition, the results are reported in Table 6. A remarkable
agreement of the present results with those of exact frequencies for uniform orthotropic
plates in Tables 5 and 6 show the computational accuracy of the present technique.

6. CONCLUSION

The vibration of orthotropic rectangular plates of linearly varying thickness on an elastic
foundation has been studied on the basis of classical plate theory. The numerical results
show that the frequency parameter for a C–S plate is always greater than C–F plate but
less than C–C plate, keeping all other parameters fixed. The effect of an elastic foundation
is found to increase the frequency for all three boundary conditions. The above analysis
also shows that a desired frequency can be obtained by a proper choice of plate parameters
which will be helpful to design engineers. Further the numerical results for plates with
uniform and non-uniform thickness suggested that an accurate natural frequency can be
obtained from the characteristic equation for any combination of the boundary conditions
at the two edges which speaks of the versatility of this technique.
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